Isolation, identification, and assay of [3H]-porfiromycin adducts of EMT6 mouse mammary tumor cell DNA: effects of hypoxia and dicumarol on adduct patterns

Cancer Commun. 1991 Jul;3(7):213-23. doi: 10.3727/095535491820873227.

Abstract

[3H]-(N-la-methyl) Porfiromycin (POR) was employed to detect and identify the radiolabeled mono- and bis-adducts formed in living EMT6 mouse mammary tumor cells under different conditions. To provide authentic standard adducts, calf-thymus DNA was treated with POR under reductive activation, then digested to nucleosides and POR-nucleoside adducts. The three major adducts formed were isolated by HPLC and authenticated. Two were mono-adducts, composed of deoxyguanosine linked at its N2-position to C-1 of POR and of 10-decarbamoyl POR. The third was a bis-adduct, in which POR was crosslinked to two deoxyguanosines at their N2-positions. DNA from [3H]-POR treated EMT6 cells was digested an analyzed by HPLC. DNA-associated label was located in thymidine and in two mono-adducts and one bis-adduct identical to those described above. Label in thymidine resulted from N-demethylation of POR and reincorporation of label into new thymidylate residues. Adducts were formed more abundantly in hypoxia than in air. In addition, the mono-adduct to crosslink ratios were different, approximately 1:1 and 2:1 for hypoxic and aerobic cells, respectively. The different patterns of alkylation in air and hypoxia may be related to the greater toxicity of POR in hypoxia. When cells were treated simultaneously with POR and dicumarol, adduct levels were lower, and a new, unknown adduct was observed primarily under hypoxia; these changes may be related to the altered toxicity of POR in the presence of dicumarol. The HPLC assay detected simultaneously the full array of stable mono- and bis-adducts in DNA with good sensitivity (greater than or equal to 2 x 10(6) adducts/nucleotide) and excellent reproducibility. This assay should be generally applicable to all cells and tissues when MC or POR with high specific radioactivity can be employed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alkylation
  • Animals
  • Chemical Phenomena
  • Chemistry
  • Chromatography, High Pressure Liquid
  • DNA, Neoplasm / analysis*
  • Dicumarol / pharmacology
  • Mammary Neoplasms, Experimental / genetics*
  • Mice
  • Oxygen
  • Porfiromycin / analysis*
  • Spectrophotometry, Ultraviolet
  • Tritium
  • Tumor Cells, Cultured

Substances

  • DNA, Neoplasm
  • Tritium
  • Dicumarol
  • Porfiromycin
  • Oxygen