Inhibition of signal transducer and activator of transcription 3 activity results in down-regulation of Survivin following irradiation

Mol Cancer Ther. 2006 Nov;5(11):2659-65. doi: 10.1158/1535-7163.MCT-06-0261.

Abstract

Signal transducer and activator of transcription 3 (Stat3) and Survivin are constitutively up-regulated in various human tumor cells. We previously found Survivin to be significantly reduced in response to radiation in human umbilical vein endothelial cells (HUVEC) but not in tumor cell lines. In this study, we examined the effect of Stat3 on Survivin expression in irradiated HUVECs and breast cancer cells. We also studied how inhibition of Stat3 and Survivin activity affects cell survival and angiogenesis following irradiation. We determined that Survivin was significantly increased by overexpression of an active Stat3 (Stat3-C). Following irradiation, the level of phospho-Stat3 Tyr(705), but not phospho-Stat3 Ser(727), was reduced in HUVECs, whereas it remained unchanged in irradiated breast cancer cells. Correspondingly, Stat3 DNA-binding activity following irradiation was specifically down-regulated in HUVECs but not in breast cancer cells. Mutation of Tyr(705) abolished radiation-induced down-regulation of Survivin. Clonogenic and endothelial cell morphogenesis assays suggested that DN-Stat3 and DN-Survivin together resulted in the greatest radiosensitization of MDA-MB-231, decreasing angiogenesis and cell survival. In summary, Stat3 modulates Survivin, and both are potential therapeutic targets for radiation sensitization in breast cancer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Breast Neoplasms / metabolism
  • Breast Neoplasms / radiotherapy
  • Down-Regulation*
  • Electrophoretic Mobility Shift Assay
  • Endothelial Cells / drug effects
  • Endothelial Cells / metabolism
  • Female
  • Gene Expression Regulation, Neoplastic / radiation effects*
  • Humans
  • Inhibitor of Apoptosis Proteins
  • Microtubule-Associated Proteins / antagonists & inhibitors
  • Microtubule-Associated Proteins / genetics
  • Microtubule-Associated Proteins / metabolism*
  • Mutation
  • Neoplasm Proteins / antagonists & inhibitors
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Radiation Tolerance*
  • STAT3 Transcription Factor / antagonists & inhibitors*
  • STAT3 Transcription Factor / genetics
  • STAT3 Transcription Factor / metabolism
  • Signal Transduction
  • Survivin
  • Tumor Cells, Cultured

Substances

  • BIRC5 protein, human
  • Inhibitor of Apoptosis Proteins
  • Microtubule-Associated Proteins
  • Neoplasm Proteins
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • Survivin