Tuberin, the tuberous sclerosis 2 (TSC2) gene product, has been identified as a tumor suppressor protein genetically implicated in the pathology of tuberous sclerosis and the female-specific lung disease lymphangioleiomyomatosis. Tuberin and its predominant cytoplasmic binding partner hamartin have been shown to complex with a variety of intracellular signaling regulators and affect the processes of protein translation, cellular proliferation, cellular migration, and cellular transcription. In previous studies, we have presented evidence for tuberin binding to the calcium-dependent intracellular signaling protein calmodulin (CaM), overlap of tuberin CaM binding domain with a binding domain for estrogen receptor alpha, and the phosphorylation-associated nuclear localization of tuberin. In the study presented here, we expand our findings on the mechanism of tuberin nuclear localization to show that the CaM-estrogen receptor-alpha binding domain of tuberin can also serve as a tuberin nuclear localization sequence. Furthermore, we identify an Akt/p90 ribosomal S6 kinase-1 phosphorylation site within the carboxyl terminus of tuberin that can regulate tuberin nuclear localization and significantly affect the ability of tuberin to modulate estrogen genomic signaling events. These findings suggest a link between tuberin nuclear localization and a variety of intracellular signaling events that have direct implications with respect to the role of tuberin in the pathology of tuberous sclerosis and lymphangioleiomyomatosis.