The T cell Ag (Ti-CD3) receptor complex has been proposed to regulate phosphoinositide-specific phospholipase C (PLC) through a cholera toxin (CTX)-sensitive guanine nucleotide-binding (G) protein. In this study, we have used CTX and staurosporine as pharmacologic probes to further define the linkage between the Ti-CD3 receptor and PLC activity in the human T cell line, Jurkat. CTX pretreatment inhibited Ti-CD3 receptor-dependent phosphoinositide hydrolysis and, concomitantly, protein tyrosine kinase activation in intact cells. Studies with electrically permeabilized Jurkat cells revealed that guanosine 5'-(3-O-thio) triphosphate stimulated an increase in PLC activity, that unlike the response to Ti-CD3 receptor ligation, was not affected by cellular pretreatment with CTX. In contrast, the phosphotyrosine phosphatase inhibitors, orthovanadate and molybdate anions, stimulated phosphoinositide hydrolysis in permeabilized cells through a CTX-sensitive mechanism of PLC activation. Additional studies with a known PTK inhibitor, staurosporine, supported the results obtained with CTX. Staurosporine pretreatment inhibited the phosphoinositide hydrolysis induced by anti-CD3 antibodies or phosphotyrosine phosphatase inhibitors, but failed to alter the G protein-dependent PLC activation response to guanosine 5'-(3-O-thio) triphosphate. The results of this study indicate that PLC activity(s) in Jurkat cells are regulated by both G protein- and PTK-dependent coupling mechanisms. However, the differential inhibitory effects of CTX and staurosporine on these PLC activation pathways strongly suggest that a protein tyrosine kinase activation event, rather than a G protein, mediates the functional linkage between the Ti-CD3 receptor and PLC activity in Jurkat cells.