The aim of this study was to evaluate multidetector helical computed tomography (MDCT), superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance (MR) imaging, and CT arterial portography (CTAP) and CT during hepatic arteriography (CTHA) for the detection and diagnosis of hepatocellular carcinomas (HCC). This included visual correlations of MDCT and SPIO-MR imaging in the detection of HCC using receiver operating characteristic (ROC) analysis. Twenty-five patients with 57 nodular HCCs were retrospectively analyzed. A total of 200 segments, including 49 segments with 57 HCCs, were reviewed independently by three observers. Each observer read four sets of images (set 1, MDCT; set 2, unenhanced and SPIO-enhanced MR images; set 3, combined MDCT and SPIO-enhanced MR images; set 4, combined CTAP and CTHA). The mean Az values representing the diagnostic accuracy for HCCs of sets 1, 2, 3, and 4 were 0.777, 0.814, 0.849, and 0.911, respectively, and there was no significant difference between sets 3 and 4. The sensitivity of set 4 was significantly higher than those of set 3 for all the lesions and for lesions 10 mm or smaller (p<0.05); however, for lesions larger than 10mm, the sensitivities of the two sets were similar. No significant difference in positive predictive value and specificity was observed between set 3 and set 4. Combined MDCT and SPIO-enhanced MR imaging may obviate the need for more invasive CTAP and CTHA for the pre-therapeutic evaluation of patients with HCC more than 10mm.