Fabrication of a polymeric vertical microlens with the dip method

Appl Opt. 2006 Nov 10;45(32):8273-7. doi: 10.1364/ao.45.008273.

Abstract

We have investigated a process based on the dip method to fabricate a polymeric vertical microlens (PVM). After the primary dip step, the PVM is formed by hanging the liquid SU-8 on a wall in virtue of the strong adhesive force and liquid cohesion. The microlens is then baked and exposed in ultraviolet light to further cross-link the negative photoresist SU-8 to enhance thermal stability and reliability. According to the experimental results, the radius of curvature of the fabricated vertical microlens varies from 120.8 to 34.2 microm, which relates to the dip depth or the thickness of the dipped pool. To characterize the PVM, an edge-emitting laser diode (lambda=1.31 microm) is then bonded onto the optical bench and a detector is utilized to observe the beam divergence with and without the lens insertion. Compared with an angle of 40.8 degrees without the microlens, the beam passing through a suitable PVM shows a vertical far-field angle of 3.32 degrees. Furthermore, the lens efficiency, approximately 83.4%, is also specified by the measurements.