This paper presents a framework for weighted fusion of several Active Shape and Active Appearance Models. The approach is based on the eigenspace fusion method proposed by Hall et al., which has been extended to fuse more than two weighted eigenspaces using unbiased mean and covariance matrix estimates. To evaluate the performance of fusion, a comparative assessment on segmentation precision as well as facial verification tests are performed using the AR, EQUINOX, and XM2VTS databases. Based on the results, it is concluded that the fusion is useful when the model needs to be updated online or when the original observations are absent.