On-line electrochemistry/liquid chromatography/mass spectrometry was used to simulate the detoxification mechanism of paracetamol in the body. In an electrochemical flow-through cell, paracetamol was oxidized at a porous glassy carbon working electrode at a potential of 600 mV vs. Pd/H2 with formation of a quinoneimine intermediate. The quinoneimine further reacted with glutathione and/or N-acetylcysteine to form isomeric adducts via the thiol function. The adducts were characterized on-line by liquid chromatography/mass spectrometry. These reactions are similar to those occurring between paracetamol and glutathione under catalysis by cytochrome P450 enzymes in the body.