Distal colorectal cancers with microsatellite instability (MSI) display distinct gene expression profiles that are different from proximal MSI cancers

Cancer Res. 2006 Oct 15;66(20):9804-8. doi: 10.1158/0008-5472.CAN-06-1163.

Abstract

Promoter methylation of the mismatch repair gene plays a key role in sporadic microsatellite instability (MSI) colorectal cancers. However, promoter methylation often occurs in proximal colon cancers, and molecular phenotypes underlying MSI cancers in distal colon have not been fully clarified. Our goal was to clarify the difference between MSI and microsatellite stability (MSS) cancers and, furthermore, to determine distinct characteristics of proximal and distal MSI cancers. By DNA microarray analysis of 84 cancers (33 MSI and 51 MSS), we identified discriminating genes (177 probe sets), which predicted MSI status with a high accuracy rate (97.6%). These genes were related to phenotypic characteristics of MSI cancers. Next, we identified 24 probe sets that were differentially expressed in proximal and distal MSI cancers. These genes included promoter methylation-mediated genes, whose expression was significantly down-regulated in proximal MSI cancers. Among discriminating genes between MSI and MSS, nine methylation-mediated genes showed down-regulation in MSI cancers. Of these, 7 (77.8%) showed down-regulation in proximal MSI cancers. Furthermore, methylation-specific PCR confirmed that frequency of hMLH1 promoter methylation was significantly higher in proximal MSI cancers (P = 0.0317). These results suggested that there is a difference between proximal and distal MSI cancers in methylation-mediated influence on gene silencing. In conclusion, using DNA microarray, we could distinguish MSI and MSS cancers. We also showed distinct characteristics of proximal and distal MSI cancers. The inactivation form of hMLH, per se, differed between proximal and distal MSI cancers. These results suggested that distal MSI cancers constitute a distinct subgroup of sporadic MSI cancers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins / biosynthesis
  • Carrier Proteins / genetics
  • Colorectal Neoplasms / genetics*
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology
  • DNA Methylation
  • Gene Expression Profiling
  • Humans
  • Microsatellite Instability*
  • MutL Protein Homolog 1
  • Nuclear Proteins / biosynthesis
  • Nuclear Proteins / genetics
  • Oligonucleotide Array Sequence Analysis

Substances

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • MLH1 protein, human
  • Nuclear Proteins
  • MutL Protein Homolog 1