An alpha-(1,4)-amylase is essential for alpha-(1,3)-glucan production and virulence in Histoplasma capsulatum

Mol Microbiol. 2006 Nov;62(4):970-83. doi: 10.1111/j.1365-2958.2006.05436.x. Epub 2006 Oct 13.

Abstract

Histoplasma capsulatum is a dimorphic fungus that causes respiratory and systemic disease and is capable of surviving and replicating within macrophages. The virulence of Histoplasma has been linked to cell wall alpha-(1,3)-glucan; however, the role of this polysaccharide during infection, its organization within the cell wall, and its synthesis and regulation remain poorly understood. To identify genes involved in the biosynthesis of alpha-(1,3)-glucan, we employed a forward genetics strategy to isolate physically marked mutants with reduced alpha-(1,3)-glucan. Insertional mutants were generated in a virulent strain of H. capsulatum by optimization of Agrobacterium tumefaciens-mediated transformation. Approximately 90% of these mutants possessed single insertions with no chromosomal rearrangements or deletions in the host genome. To confirm the role and specificity of identified candidate genes, we phenocopied the disrupted locus by either RNA interference or targeted gene deletion. Our findings indicate alpha-(1,3)-glucan production requires the function of the AMY1 gene product, a novel protein with homology to the alpha-amylase family of glycosyl hydrolases, and UGP1, a UTP-glucose-1-phosphate uridylyltransferase which synthesizes UDP-glucose monomers. Loss of AMY1 function attenuated the ability of Histoplasma to kill macrophages and to colonize murine lungs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agrobacterium tumefaciens
  • Animals
  • Base Sequence
  • Cell Line, Tumor
  • Cell Wall / chemistry
  • DNA, Bacterial / genetics
  • Gene Targeting
  • Glucans / biosynthesis*
  • Histoplasma / enzymology*
  • Histoplasma / genetics
  • Histoplasma / pathogenicity*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Molecular Sequence Data
  • Mutagenesis, Insertional
  • RNA Interference
  • Transformation, Genetic
  • Virulence
  • alpha-Amylases / genetics
  • alpha-Amylases / physiology*

Substances

  • DNA, Bacterial
  • Glucans
  • T-DNA
  • alpha-1,3-glucan
  • alpha-Amylases