Comparative binding energy analysis considering multiple receptors: a step toward 3D-QSAR models for multiple targets

J Med Chem. 2006 Oct 19;49(21):6241-53. doi: 10.1021/jm060350h.

Abstract

Comparative binding energy analysis, a technique to derive receptor-based three-dimensional quantitative structure-activity relationships (3D-QSAR), is herein extended to consider both affinity and selectivity in the derivation of the QSAR model. The extension is based on allowing multiple structurally related receptors to enter the X-matrix employed in the derivation of the structure-activity model. As a result, a single model common to all of them is obtained that considers both intra- and inter-receptor affinity differences for a given congeneric series. We applied the technique to a series of 88 3-amidinophenylalanines, binding to thrombin, trypsin, and factor Xa (fXa). A single predictive regression model for the three receptors involving 202 complexes, with a leave-one out (LOO) cross-validated Q(2) of 0.689, was obtained, and selectivity requirements were investigated. We find that total or partial occupancy of any of the three main pockets in the binding site (D-site, P-site, and the rim of the S1-site) leads to higher affinity across the family. However, the fact that thrombin can make stronger interactions in the P-site, as a result of its exclusive 60-loop, makes of this site a specificity pocket for this thrombin. Occupancy of the D-site leads to more active inhibitors toward fXa for the same reason, but the model does not highlight strongly the D-box because inhibitors are too short to fully occupy it. Negative charge density in the neighborhood of position 88 (a Lys insertion in thrombin) is found to be a determinant for thrombin recognition. These results were consistent with previous studies on selectivity in the thrombin/trypsin/fXa system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Benzenesulfonates / chemistry
  • Binding Sites
  • Factor Xa / chemistry*
  • Factor Xa Inhibitors
  • Ligands
  • Models, Molecular
  • Molecular Sequence Data
  • Naphthalenesulfonates / chemistry
  • Phenylalanine / analogs & derivatives*
  • Phenylalanine / chemistry*
  • Protein Binding
  • Quantitative Structure-Activity Relationship*
  • Regression Analysis
  • Serine Proteinase Inhibitors / chemistry*
  • Static Electricity
  • Thermodynamics
  • Thrombin / antagonists & inhibitors
  • Thrombin / chemistry*
  • Trypsin / chemistry*

Substances

  • Benzenesulfonates
  • Factor Xa Inhibitors
  • Ligands
  • Naphthalenesulfonates
  • Serine Proteinase Inhibitors
  • Phenylalanine
  • Trypsin
  • Thrombin
  • Factor Xa