Purpose: To investigate whether dietary docosahexaenoic acid (DHA), a peroxidizable polyunsaturated omega-3 fatty acids, sensitizes rat mammary tumors to anthracyclines and whether its action interferes with tumor vascularization, a critical determinant of tumor growth.
Experimental design: Female Sprague-Dawley rats were initiated by N-methylnitrosourea to develop mammary tumors and then assigned to a control group (n = 18), receiving a supplementation of palm oil, or to a DHA group (n = 54), supplemented with a microalgae-produced oil (DHASCO, 1.5 g/d). The DHA group was equally subdivided into three subgroups with addition of different amounts of alpha-tocopherol. Epirubicin was injected weekly during 6 weeks after the largest tumor reached 1.5 cm(2), and subsequent changes in the tumor surface were evaluated. Tumor vascularization was assessed by power Doppler sonography before and during chemotherapy.
Results: DHA and alpha-tocopherol were readily absorbed and incorporated into rat tissues. Epirubicin induced a 45% mammary tumor regression in the DHA-supplemented group, whereas no tumor regression was observed in the control group. In the DHA group, before chemotherapy was initiated, tumor vascular density was 43% lower than in the control group and remained lower during chemotherapy. Enhancement of epirubicin efficacy by DHA was abolished in a dose-dependent manner by alpha-tocopherol, and the same trend was observed for DHA-induced reduction in tumor vascular density.
Conclusions: Dietary DHA supplementation led to a reduction in tumor vascularization before the enhancement of any response to anthracyclines, suggesting that DHA chemosensitizes mammary tumors through an inhibition of the host vascular response to the tumor.