Plasmon hybridization in nanoshells with a nonconcentric core

J Chem Phys. 2006 Sep 28;125(12):124708. doi: 10.1063/1.2352750.

Abstract

We apply the plasmon hybridization method to a nanoshell with a nonconcentric (offset) core and investigate how the energy and excitation cross section of the plasmon modes depend on the offset distance D of the inner core from the nanoshell center. A two-center spherical coordinate system is used for mathematical convenience. It is shown that the presence of an offset core shifts the plasmon energies and makes higher multipolar nanoshell plasmons dipole active and visible in the optical spectrum. The dependence of the plasmon shifts on D is weak for small offsets but strong for large offsets. The polarization dependence of the optical absorption spectra is found to be relatively weak. The electromagnetic field enhancements are shown to be much larger than on a concentric nanoshell. The results agree very well with results from finite difference time domain simulations.