Introduction: Our goal was to evaluate whether the T1 shortening effect caused by contrast leakage into brain tumors, a well-known confounding effect in the quantification of relative cerebral blood volume (rCBV) measurements, may be corrected by the administration of a predose of gadolinium-DTPA.
Methods: As part of their presurgical imaging protocol, 25 patients with primary brain tumors underwent two consecutive dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion MR studies. Intratumoral rCBV measurements and normalized rCBV values obtained during the first-pass and second-bolus studies were compared (Wilcoxon signed-ranks test). The frequency of relatively increased rCBV ratios on the second-bolus study was compared between enhancing and non-enhancing neoplasms (Fisher's exact test). Postprocessing perfusion studies were evaluated for image quality on a scale of 0-3 (Wilcoxon signed-ranks test). Four studies were excluded due to unacceptable image quality.
Results: Mean normalized rCBVs were 9.04 (SD 4.64) for the first-pass and 7.99 (SD 3.84) for the second-bolus study. There was no statistically significant difference between the two perfusion studies in either intratumoral rCBV (P=0.237) or rCBV ratio (P=0.181). Five enhancing and four non-enhancing tumors showed a relative increase in rCBV ratio on the second-bolus study, without a significant difference between the groups. Image quality was not significantly different between perfusion studies.
Conclusion: Our results did not demonstrate a significant difference between first-pass and second-bolus rCBV measurements in DSC perfusion MR imaging. The administration of a predose of gadolinium-DTPA does not appear to be an efficient way of compensating for the underestimation of intratumoral rCBV values due to the T1 shortening effect.