Programmed cell death through apoptosis is a pan-metazoan character involving intermolecular signaling networks that have undergone substantial lineage-specific evolution. A survey of apoptosis-related proteins encoded in the sea urchin genome provides insight into this evolution while revealing some interesting novelties, which we highlight here. First, in addition to a typical CARD-carrying Apaf-1 homologue, sea urchins have at least two novel Apaf-1-like proteins that are each linked to a death domain, suggesting that echinoderms have evolved unique apoptotic signaling pathways. Second, sea urchins have an unusually large number of caspases. While the set of effector caspases (caspases-3/7 and caspase-6) in sea urchins is similar to that found in other basal deuterostomes, signal-responsive initiator caspase subfamilies (caspases-8/10 and 9, which are respectively linked to DED and CARD adaptor domains) have undergone echinoderm-specific expansions. In addition, there are two groups of divergent caspases, one distantly related to the vertebrate interleukin converting enzyme (ICE)-like subfamily, and a large clan that does not cluster with any of the vertebrate caspases. Third, the complexity of proteins containing an anti-apoptotic BIR domain and of Bcl-2 family members approaches that of vertebrates, and is greater than that found in protostome model systems such as Drosophila or Caenorhabditis elegans. Finally, the presence of Death receptor homologues, previously known only in vertebrates, in both Strongylocentrotus purpuratus and Nematostella vectensis suggests that this family of apoptotic signaling proteins evolved early in animals and was subsequently lost in the nematode and arthropod lineage(s). Our results suggest that cell survival is contingent upon a diverse array of signals in sea urchins, more comparable in complexity to vertebrates than to arthropods or nematodes, but also with unique features that may relate to specific requirements imposed by the biphasic life cycle and/or immunological idiosyncrasies of this organism.