Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells

Circ Res. 2006 Oct 27;99(9):970-8. doi: 10.1161/01.RES.0000247068.75808.3f. Epub 2006 Sep 28.

Abstract

Mitochondria have been implicated as a potential site of O(2) sensing underlying hypoxic pulmonary vasoconstriction (HPV), but 2 disparate models have been proposed to explain their reaction to hypoxia. One model proposes that hypoxia-induced increases in mitochondrial reactive oxygen species (ROS) generation activate HPV through an oxidant-signaling pathway, whereas the other proposes that HPV is a result of decreased oxidant signaling. In an attempt to resolve this debate, we use a novel, ratiometric, redox-sensitive fluorescence resonance energy transfer (HSP-FRET) probe, in concert with measurements of reduced/oxidized glutathione (GSH/GSSG), to assess cytosolic redox responses in cultured pulmonary artery smooth muscle cells (PASMCs). Superfusion of PASMCs with hypoxic media increases the HSP-FRET ratio and decreases GSH/GSSG, indicating an increase in oxidant stress. The antioxidants pyrrolidinedithiocarbamate and N-acetyl-l-cysteine attenuated this response, as well as the hypoxia-induced increases in cytosolic calcium ([Ca(2+)](i)), assessed by the Ca(2+)-sensitive FRET sensor YC2.3. Adenoviral overexpression of glutathione peroxidase or cytosolic or mitochondrial catalase attenuated the hypoxia-induced increase in ROS signaling and [Ca(2+)](i). Adenoviral overexpression of cytosolic Cu, Zn-superoxide dismutase (SOD-I) had no effect on the hypoxia-induced increase in ROS signaling and [Ca(2+)](i), whereas mitochondrial matrix-targeted Mn-SOD (SOD-II) augmented [Ca(2+)](i). The mitochondrial inhibitor myxothiazol attenuated the hypoxia-induced changes in the ROS signaling and [Ca(2+)](i), whereas cyanide augmented the increase in [Ca(2+)](i). Finally, simultaneous measurement of ROS and Ca(2+) signaling in the same cell revealed that the initial increase in these 2 signals could not be distinguished temporally. These results demonstrate that hypoxia triggers increases in PASMC [Ca(2+)](i) by augmenting ROS signaling from the mitochondria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Signaling
  • Cell Hypoxia
  • Cytosol / chemistry
  • Cytosol / metabolism
  • Fluorescence Resonance Energy Transfer
  • Glutathione Peroxidase / metabolism
  • Mitochondria / metabolism*
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / metabolism*
  • Muscle, Smooth, Vascular / physiology
  • Myocytes, Smooth Muscle / metabolism
  • Myocytes, Smooth Muscle / physiology
  • Oxidation-Reduction
  • Pulmonary Artery / cytology
  • Pulmonary Artery / metabolism*
  • Rats
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction
  • Vasoconstriction

Substances

  • Reactive Oxygen Species
  • Glutathione Peroxidase
  • Calcium