T cell AgR zeta chain down-regulation associated with T cell dysfunction has been described in cancer, infectious, and autoimmune diseases. We have previously shown that chronic inflammation is mandatory for the induction of an immunosuppressive environment leading to this phenomenon. To identify the key immunosuppressive components, we used an in vivo mouse model exhibiting chronic inflammation-induced immunosuppression. Herein, we demonstrate that: 1) under chronic inflammation secondary lymphatic organs display various immunological milieus; zeta chain down-regulation and T cell dysfunction are induced in the spleen, peripheral blood, and bone marrow, but not in lymph nodes, correlating with elevated levels of Gr1(+)Mac-1(+) myeloid suppressor cells (MSC); 2) MSC are responsible for the induction of such an immunosuppression under both normal and inflammatory conditions; and 3) normal T cells administered into mice exhibiting an immunosuppressive environment down-regulate their zeta expression. Such an environment is anticipated to limit the success of immunotherapeutic strategies based on vaccination and T cell transfer, which are currently under investigation for immunotherapy of cancer.