Background: Hepatitis C virus (HCV) encodes several proteins that interfere with the host cell antiviral response. Previously, the serine protease NS3/4A was shown to inhibit IFN-beta gene expression by blocking dsRNA-activated retinoic acid-inducible gene I (RIG-I) and Toll-like receptor 3 (TLR3)-mediated signaling pathways.
Results: In the present work, we systematically studied the effect of all HCV proteins on IFN gene expression. NS2 and NS3/4A inhibited IFN gene activation. NS3/4A inhibited the Sendai virus-induced expression of multiple IFN (IFN-alpha, IFN-beta and IFN-lambda1/IL-29) and chemokine (CCL5, CXCL8 and CXCL10) gene promoters. NS2 and NS3/4A, but not its proteolytically inactive form NS3/4A-S139A, were found to inhibit promoter activity induced by RIG-I or its adaptor protein Cardif (or IPS-1/MAVS/VISA). Both endogenous and transfected Cardif were proteolytically cleaved by NS3/4A but not by NS2 indicating different mechanisms of inhibition of host cell cytokine production by these HCV encoded proteases. Cardif also strongly colocalized with NS3/4A at the mitochondrial membrane, implicating the mitochondrial membrane as the site for proteolytic cleavage. In many experimental systems, IFN priming dramatically enhances RNA virus-induced IFN gene expression; pretreatment of HEK293 cells with IFN-alpha strongly enhanced RIG-I expression, but failed to protect Cardif from NS3/4A-mediated cleavage and failed to restore Sendai virus-induced IFN-beta gene expression.
Conclusion: HCV NS2 and NS3/4A proteins were identified as potent inhibitors of cytokine gene expression suggesting an important role for HCV proteases in counteracting host cell antiviral response.