In the present study, we addressed the issue of whether healthy individuals can recognize a given gesture as their own, based on kinematic information. To this purpose, we required 36 volunteers to execute a series of hand movements of increasing complexity, while their kinematics was recorded by a motion-capture system. In a later session, we showed them a series of computer animations where a virtual hand, rendered as a simple stick-diagram, was animated by the kinematics recorded from the participants in the previous session. Their task was to recognize their own movements, choosing from three alternatives. To test the contribution of various potential cues to action recognition, the roles of (1) access to motor representation, (2) gesture complexity, and (3) familiarity effects were separately investigated. The results support the hypothesis that kinematic templates rather than single motor parameters contribute to self-recognition in the absence of morphological cues.