Background and purpose: The membrane-targeted apoptosis modulators erucylphosphocholine (ErPC) and erucylphosphohomocholine (ErPC3) induce apoptosis in highly apoptosis resistant malignant glioma cell lines and enhance radiation-induced cell death and eradication of clonogenic tumor cells in vitro. Aim of the present study was to elucidate molecular mechanisms of combined action.
Materials and methods: Induction of apoptosis was evaluated by determination of nuclear morphology (fluorescence microscopy), alteration of mitochondrial function and caspase-activation (flow cytometry, Western blot). Activity of protein kinase B (PKB/Akt) and key downstream effectors involved in apoptosis regulation was verified by Western blot analysis using activation-specific antibodies.
Results: Increased cytotoxicity of the combination was linked to a more efficient activation of the intrinsic apoptosis pathway with increased damage of the mitochondria and caspase-activation. Moreover, activity of the survival kinase PKB/Akt was downregulated upon treatment with ErPC/ErPC3 alone or in combination with ionizing radiation. Inhibition of PKB/Akt was associated with decreased phosphorylation and thus activation of the pro-apoptotic Bcl-2 protein Bad as well as dephosphorylation of the transcription factor FOXO3A (FKHRL1) that may be responsible for the observed increased expression of the pro-apoptotic Bcl-2 protein Bim.
Conclusions: Our data suggest a role for inhibition of PKB/Akt-mediated anti-apoptotic signaling in increased efficacy of the combination.