There has been much debate about the use of the so-called "vaccinate-to-live" policy for the control of foot-and-mouth disease (FMD) in Europe, according to which, spread of the FMD virus (FMDV) from future outbreaks could be controlled by a short period of "emergency" vaccination of surrounding herds, reducing the need for large-scale preemptive culling of at-risk animals. Since vaccinated animals may become subclinically infected with FMDV following challenge exposure, it is necessary to either remove all vaccinates (vaccinate-to-kill) or to detect and remove vaccinates in which virus is circulating or has established persistent infections (vaccinate-to-live), in order to rapidly regain the most favoured trading status of FMD-free without vaccination. The latter approach can be supported by testing vaccinated animals for the presence of antibodies to certain non-structural proteins (NSP) of FMDV, which are induced by infection with the virus, but not by vaccination with purified FMD vaccines. Using test sensitivity and specificity data established at a recent workshop on NSP assays [Brocchi E, Bergmann I, Dekker A, Paton DJ, Sammin DJ, Greiner M, et al. Comparative performance of six ELISAs for antibodies to the non-structural proteins of foot-and-mouth disease. Vaccine, in press], this paper examines the ways in which serological testing with NSP ELISAs can be used and interpreted and the effect that this will have on the confidence with which freedom from infection can be demonstrated within guidelines specified by the World Animal Health Organisation and the European Commission.