Fetal nucleated cells circulating in the peripheral blood during pregnancy are potential targets for noninvasive genetic testing. Fluorescence in situ hybridization (FISH) frequently is used to quantify the total number of fetal cells in peripheral blood of pregnant women. We describe an alternative molecular cytogenetic procedure that is the primed in situ labeling (PRINS). This technique consists of annealing oligonucleotides specific to individual chromosome targets and in situ elongation using Taq DNA polymerase to incorporate labeled dUTPs. The sites of the newly synthesized DNA sequences were revealed as fluorescent signals using an immunochemical reaction. The dual-color PRINS was specifically performed for simultaneous detection of two chromosome targets, X and Y. The fluorescent signals corresponding to chromosomes X and Y were displayed as red and green color spots, respectively. The sensitivity and specificity of PRINS are similar to FISH and allow us to efficiently and reliably detect fetal cells in maternal blood. Moreover, dual-color PRINS is faster and more cost-effective than FISH.