Ultrafast structural dynamics concomitant to excitation energy transfer in DNA has been studied using a pair of pyrene-labeled DNA bases. The temporal evolution of the femtosecond pump-probe spectra reveals the existence of two electronic coupling pathways, through-base stack and through-space, which lead to excitation energy transfer and excimer formation even when the labeled DNA bases are separated by one AT base pair. The electronic coupling which mediates through-base stack energy transfer is so strong that a new absorption band arises in the excited-state absorption spectrum within 300 fs. From the analysis of time-dependent spectral shifts due to through-space excimer formation, the local structural dynamics and flexibility of DNA are characterized on the picosecond and nanosecond time scale.