Aims: Irinotecan (CPT-11) is a prodrug that is used to treat metastatic colorectal cancer. It is activated to the topoisomerase poison SN-38 by carboxylesterases. SN-38 is metabolized to its inactive glucuronide, SN-38 glucuronide. The aim of this study was to determine, the reactivation of SN-38 from SN-38 glucuronide by beta-glucuronidase may represent a significant pathway of SN-38 formation.
Methods: The production of SN-38 from irinotecan and SN-38 glucuronide (2.4, 9.6 and 19.2 microm) was measured in homogenates of human colorectal tumour, and matched normal colon mucosa from 21 patients).
Results: The rate of conversion of irinotecan (9.6 microm) was lower in tumour tissue than matched normal colon mucosa samples (0.30+/-0.14 pmol min-1 mg-1 protein and 0.77+/-0.59 pmol min-1 mg-1 protein, respectively; P<0.005). In contrast, no significant difference was observed in beta-glucuronidase activity between tumour and matched normal colon samples (4.56+/-6.9 pmol min-1 mg-1 protein and 3.62+/-2.95 pmol min-1 mg-1 protein, respectively, using 9.6 microm SN-38 glucuronide; P>0.05). beta-Glucuronidase activity in tumour correlated to that observed in matched normal tissue (r2>0.23, P<0.05), whereas this was not the case for carboxylesterase activity. At equal concentrations of irinotecan and SN-38 glucuronide, the rate of beta-glucuronidase-mediated SN-38 production was higher than that formed from irinotecan in both tumour and normal tissue (P<0.05). However, at concentrations that reflect the relative plasma concentrations observed in patients, the rate of SN-38 production via these two pathways was comparable.
Conclusions: Tumour beta-glucuronidase may play a significant role in the exposure of tumours to SN-38 in vivo.