First principle computational study on the full conformational space of L-proline diamides

J Phys Chem A. 2005 Mar 24;109(11):2660-79. doi: 10.1021/jp040594i.

Abstract

Ab initio molecular orbital computations were carried out at three levels of theory: RHF/3-21G, RHF/6-31G(d), and B3LYP/6-31G(d), on four model systems of the amino acid proline, HCO-Pro-NH2 [I], HCO-Pro-NH-Me [II], MeCO-Pro-NH2 [III], and MeCO-Pro-NH-Me [IV], representing a systematic variation in the protecting N- and C-terminal groups. Three previously located backbone conformations, gammaL, epsilonL, and alphaL, were characterized together with two ring-puckered forms syn (gauche+ = g+) or "DOWN" and anti (gauche- = g-) or "UP", as well as trans-trans, trans-cis, cis-trans, and cis-cis peptide bond isomers. The topologies of the conformational potential energy cross-sections (PECS) of the potential energy hypersurfaces (PEHS) for compounds [I]-[IV] were explored and analyzed in terms of potential energy curves (PEC), and HCO-Pro-NH2 [I] was also analyzed in terms of potential energy surfaces (PESs). Thermodynamic functions were also calculated for HCO-Pro-NH2 [I] at the CBS-4M and G3MP2 levels of theory. The study confirms that the use of the simplest model, compound [I] with P(N) = P(C) = H, along with the RHF/3-21G level of theory, is an acceptable practice for the analysis of peptide models because only minor differences in geometry and stability are observed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation*
  • Diamide / analogs & derivatives*
  • Diamide / chemistry*
  • Models, Molecular*
  • Molecular Conformation
  • Proline / analogs & derivatives*
  • Proline / chemistry*

Substances

  • Diamide
  • Proline