Male infertility is now a major reproductive health problem because of an increasing number of environmental pollutants and chemicals, which eventually result in gene mutations. Genetic alterations caused by environmental factors account for a significant percentage of male infertility. Microarray technology is a powerful tool capable of measuring simultaneously the expression of thousands of genes expressed in a single sample. Eventually, advances in genetic technology will allow for the diagnosis of patients with male infertility due to congenital reasons or environmental factors. Since its introduction in 1994, microarray technology has made significant advances in the identification and characterization of novel or known genes possibly correlated with male infertility in mice, as well as in humans. This provides a rational basis for the application of microarray to establishing molecular signatures for the diagnosis and gene therapy targets of male infertility. In this review, the differential gene expression patterns characterized by microarray in germ and somatic cells at different steps of development or in response to stimuli, as well as a number of novel or known genes identified to be associated with male infertility in mice and humans, are addressed. Moreover, issues pertaining to measurement reproducibility are highlighted for the application of microarray data to male infertility.