[Effect of cell surface sialic acid and their linkages on adhesion of mammary carcinoma cells]

Nan Fang Yi Ke Da Xue Xue Bao. 2006 Jun;26(6):742-6.
[Article in Chinese]

Abstract

Objective: To investigate the effect of cell surface sialic acid and its linkage on the cell-cell and cell-matrix adhesion of mammary carcinoma cells MD-MB-435.

Methods: MD-MB-435 cells were sense-transfected with ST6Gal I cDNA or antisense-transfected with part of the ST6Gal I sequence inserted in pcDNA 3.1 vector, with mock transfection with pcDNA3.1 vector as the control. The cell surface alpha2, 6-linked sialylation was determined by fluorescence-activated cell sorting (FACS) using lectin SNA (Sambucus nigra agglutinin specific to alpha2, 6-linked sialic acid on N-linked glycoprotein). A significantly increased alpha2, 6-sialylation subclone in sense-transfectants and a decreased alpha2, 6-sialylation subclone in antisense-transfectants were selected for further examination of cell-cell and cell-matrix (collagen IV) adhesion. The transfectants were also treated with sialidase to compare the capacity of cell adhesion affected by cell surface sialylation.

Results: Sense-transfection subclone showed a reduced cell-cell aggregation but enhanced cell-matrix adhesion. In contrast, the antisense-transfection subclone exhibited increased cell-cell aggregation and decreased cell-matrix adhesion. After treatment with sialidase, the cell-matrix adhesion of all the transfectants and the parental MDA-MB-435 cells were significantly reduced to the level of 31%-57% of untreated cells.

Conclusion: Cell surface sialic acid and alpha2, 6-linked sialylation play an important role in cell-cell and cell-matrix adhesion of mammary carcinoma cell MDA-MB-435.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antigens, CD / genetics*
  • Antigens, CD / metabolism
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Adhesion
  • Cell Line, Tumor
  • Cell Membrane / metabolism*
  • Cell-Matrix Junctions / metabolism
  • Collagen Type IV / metabolism
  • Extracellular Matrix / metabolism
  • Humans
  • N-Acetylneuraminic Acid / metabolism*
  • Sialyltransferases / genetics*
  • Sialyltransferases / metabolism
  • Transfection
  • beta-D-Galactoside alpha 2-6-Sialyltransferase

Substances

  • Antigens, CD
  • Collagen Type IV
  • Sialyltransferases
  • N-Acetylneuraminic Acid
  • beta-D-Galactoside alpha 2-6-Sialyltransferase