Using Chou-Talalay median effect analysis, we demonstrated in permanent and short-term cultures of colorectal cancer cells that the expression of measles virus fusogenic membrane glycoproteins (FMGs) in combination with chemotherapy often causes over most of the cytotoxic dose range synergistic cell killing. In this combined treatment, we observed strongly enhanced annexin V binding and caspase-3/7 activity when compared to single-agent treatment. Furthermore, we showed increased expression of heat-shock protein (Hsp)70 and Hsp90alpha, but not of Hsp60. In a subcutaneous HT-29 colorectal xenograft model, we demonstrated that the administration of a replication-defective adenoviral or herpes simplex virus (HSV) amplicon vector (Ad.H/F or HSV.H/F) encoding tumor-restricted FMG in combination with FOLFOX significantly enhanced treatment outcome when compared to treatment with each compound individually. To increase the fraction of tumor cells expressing the FMG, we trans-complemented the Ad.H/F and HSV.H/F vector with the respective oncolytic replication-restricted adenovirus Ad.COXDeltaMK or HSV-1 G47Delta vector. At the end of the observation period (day 100), eight out of 10 animals that received G47Delta, HSV.H/F and FOLFOX were alive and tumor free. Administration of the analogous adenovirus-based regimen resulted in four out of 10 long-term survivors. We demonstrated that the expression of FMG in combination with chemotherapy can significantly enhance treatment outcome, which is further enhanced by combination with trans-complementing oncolytic vectors.