Requirements and infection prophylaxis for internally cooled implant drills

Folia Morphol (Warsz). 2006 Feb;65(1):34-6.

Abstract

Implant site preparation is crucially important to long-term success. Heat generation during drilling is unfavourable, since bone is relatively susceptible to heat, depending on its vascularisation and microstructure. Numerous factors such as drilling pressure, number of revolutions, drill design, wear and material, drilling depth and cooling influence heat generation. Internally cooled drills are, therefore, increasingly used, even though the improved cooling effect compared to conventional externally cooled drills is controversial. Internally cooled drills may have the disadvantage of a germ reservoir developing in the cooling channel. This study aimed to examine the effects of disinfection and sterilisation of internally cooled drills. After contamination of the cooling channel with suitable bioindicators (Enterococcus faecium, ATCC 6057 and spores of Bacillus stearothermophilus, ATCC 7953), the drills were disinfected (disinfection solution ID 220, Dürr Dental) and autoclaved (Webeco, E5S90, 134 degrees C, 2.6 bar, 5 min). Disinfection was not completely effective except after pre-cleaning. By means of sterilisation all spores of Bacillus stearothermophilus were completely killed. Internally cooled drills can be successfully disinfected by means of this hygienic procedure routinely used in dental practice and no source of infection is created.

MeSH terms

  • Cold Temperature
  • Cross Infection / prevention & control*
  • Dental Implantation / adverse effects
  • Dental Implantation / instrumentation*
  • Dental Instruments / adverse effects
  • Dental Instruments / microbiology*
  • Disinfection / methods*
  • Equipment Contamination
  • Equipment Design*