Phosphorylation of protein phosphatase inhibitor-1 by protein kinase C

J Biol Chem. 2006 Aug 25;281(34):24322-35. doi: 10.1074/jbc.M603282200. Epub 2006 Jun 13.

Abstract

Inhibitor-1 becomes a potent inhibitor of protein phosphatase 1 when phosphorylated by cAMP-dependent protein kinase at Thr(35). Moreover, Ser(67) of inhibitor-1 serves as a substrate for cyclin-dependent kinase 5 in the brain. Here, we report that dephosphoinhibitor-1 but not phospho-Ser(67) inhibitor-1 was efficiently phosphorylated by protein kinase C at Ser(65) in vitro. In contrast, Ser(67) phosphorylation by cyclin-dependent kinase 5 was unaffected by phospho-Ser(65). Protein kinase C activation in striatal tissue resulted in the concomitant phosphorylation of inhibitor-1 at Ser(65) and Ser(67), but not Ser(65) alone. Selective pharmacological inhibition of protein phosphatase activity suggested that phospho-Ser(65) inhibitor-1 is dephosphorylated by protein phosphatase 1 in the striatum. In vitro studies confirmed these findings and suggested that phospho-Ser(67) protects phospho-Ser(65) inhibitor-1 from dephosphorylation by protein phosphatase 1 in vivo. Activation of group I metabotropic glutamate receptors resulted in the up-regulation of diphospho-Ser(65)/Ser(67) inhibitor-1 in this tissue. In contrast, the activation of N-methyl-d-aspartate-type ionotropic glutamate receptors opposed increases in striatal diphospho-Ser(65)/Ser(67) inhibitor-1 levels. Phosphomimetic mutation of Ser(65) and/or Ser(67) did not convert inhibitor-1 into a protein phosphatase 1 inhibitor. On the other hand, in vitro and in vivo studies suggested that diphospho-Ser(65)/Ser(67) inhibitor-1 is a poor substrate for cAMP-dependent protein kinase. These observations extend earlier studies regarding the function of phospho-Ser(67) and underscore the possibility that phosphorylation in this region of inhibitor-1 by multiple protein kinases may serve as an integrative signaling mechanism that governs the responsiveness of inhibitor-1 to cAMP-dependent protein kinase activation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain / metabolism
  • Cyclic AMP-Dependent Protein Kinases / metabolism
  • In Vitro Techniques
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • PC12 Cells
  • Phosphorylation
  • Protein Kinase C / metabolism*
  • Proteins / metabolism
  • Rats
  • Serine
  • Substrate Specificity

Substances

  • Intracellular Signaling Peptides and Proteins
  • Proteins
  • protein phosphatase inhibitor-1
  • protein phosphatase inhibitor-1, rat
  • Serine
  • Cyclic AMP-Dependent Protein Kinases
  • Protein Kinase C