In this paper, we present a framework to estimate local ventricular myocardium contractility using clinical MRI, a heart model and data assimilation. First, we build a generic anatomical model of the ventricles including muscle fibre orientations and anatomical subdivisions. Then, this model is deformed to fit a clinical MRI, using a semi-automatic fuzzy segmentation, an affine registration method and a local deformable biomechanical model. An electromechanical model of the heart is then presented and simulated. Finally, a data assimilation procedure is described, and applied to this model. Data assimilation makes it possible to estimate local contractility from given displacements. Presented results on fitting to patient-specific anatomy and assimilation with simulated data are very promising. Current work on model calibration and estimation of patient parameters opens up possibilities to apply this framework in a clinical environment.