The promoter of the hsp70 gene of Drosophila melanogaster has been widely used for the expression of foreign genes in other insects. It has been generally assumed that because this gene is highly conserved, its promoter will function efficiently in other species. We report the results of a quantitative comparison of the activities of the medfly and D. melanogaster hsp70 promoters in vivo in transformed medflies. We constructed transformed lines containing the lacZ reporter gene under the control of the two promoters by using Minos-mediated germ-line transformation. The activity of each promoter was evaluated in 15 transformed lines by beta-galactosidase quantitative assays. The heat-inducible activity of the medfly promoter was found several times higher than the respective activity of the heterologous D. melanogaster promoter. These results were confirmed by northern blot analysis and indicate that the D. melanogaster promoter does not work efficiently in medfly. The -263/+105 medfly promoter region that was used in this study was found able to drive heat shock expression of the lacZ reporter gene in all stages of medfly, except early embryonic stages, in a similar fashion to the endogenous hsp70 genes. However the heat inducible RNA levels driven from this promoter region were significantly lower than the endogenous hsp70 RNA levels, suggesting that additional upstream and/or downstream sequences to the -263/+105 region may be necessary for optimum function of the medfly hsp70 promoter in vivo.