DNA lesions that arrest replication can lead to rearrangements, mutations, or lethality when not processed accurately. After UV-induced DNA damage in Escherichia coli, RecA and several recF pathway proteins are thought to process arrested replication forks and ensure that replication resumes accurately. Here, we show that the RecJ nuclease and RecQ helicase, which partially degrade the nascent DNA at blocked replication forks, are required for the rapid recovery of DNA synthesis and prevent the potentially mutagenic bypass of UV lesions. In the absence of RecJ, or to a lesser extent RecQ, the recovery of replication is significantly delayed, and both the recovery and cell survival become dependent on translesion synthesis by polymerase V. The RecJ-mediated processing is proposed to restore the region containing the lesion to a form that allows repair enzymes to remove the blocking lesion and DNA synthesis to resume. In the absence of nascent DNA processing, polymerase V can synthesize past the lesion to prevent lethality, although this occurs with slower kinetics and a higher frequency of mutagenesis.