In vitro assessment of the pharmacodynamic properties and the partitioning of OZ277/RBx-11160 in cultures of Plasmodium falciparum

J Antimicrob Chemother. 2006 Jul;58(1):52-8. doi: 10.1093/jac/dkl209. Epub 2006 May 30.

Abstract

Objectives: Using synchronous cultures of Plasmodium falciparum malaria, the stage sensitivity of the parasite to OZ277 (RBx-11160), the first fully synthetic antimalarial peroxide that has entered Phase II clinical trials, was investigated in vitro over a concentration range of 1 x to 100 x the IC50. Secondly, partitioning of OZ277 into P. falciparum-infected red blood cells (RBCs) and uninfected RBCs was studied in vitro by measuring its distribution between RBCs and plasma (R/P).

Methods: The effects of timed in vitro exposure (1, 6, 12 or 24 h) to OZ277 were monitored by incorporation of [3H]hypoxanthine into parasite nucleic acids and by light-microscopic analysis of parasite morphology. Partitioning studies were performed with radiolabelled [14C]OZ277.

Results: After 1 h of exposure to OZ277 at the highest concentration (100 x the IC50) followed by removal of the compound, the hypoxanthine assay showed that growth of mature stages of P. falciparum was reduced to below 20%. Young ring forms were slightly less sensitive (43% growth). Similar stage-specific profiles were found for the antimalarial reference compounds artemether and chloroquine. Strong inhibition (< or = 6% growth) of all parasite stages was observed when the parasites were exposed to each of the three compounds for 6 h or longer. After removal of the compounds, the parasites did not recover, indicating that the observed growth inhibitions were cytotoxic rather than cytostatic. Pyrimethamine was confirmed to be active exclusively against young schizonts. Light-microscopic analysis also demonstrated the specificity of pyrimethamine against the schizont forms and showed that OZ277, artemether and chloroquine attenuated parasite growth more rapidly than did pyrimethamine. The R/P for OZ277 was 1.5 for uninfected RBCs and up to 270 for infected RBCs.

Conclusions: The present study indicates similar stage-specific profiles for OZ277 and for the more well-established antimalarial agents artemether and chloroquine. Secondly, the study describes a significant accumulation of radiolabelled OZ277 in P. falciparum-infected RBCs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antimalarials / metabolism*
  • Artemether
  • Artemisinins / metabolism
  • Chloroquine / metabolism
  • Erythrocytes / parasitology
  • Heterocyclic Compounds, 1-Ring / chemistry
  • Heterocyclic Compounds, 1-Ring / metabolism*
  • Molecular Structure
  • Peroxides / chemistry
  • Peroxides / metabolism*
  • Plasmodium falciparum / metabolism*
  • Pyrimethamine / metabolism
  • Spiro Compounds / chemistry
  • Spiro Compounds / metabolism*

Substances

  • Antimalarials
  • Artemisinins
  • Heterocyclic Compounds, 1-Ring
  • Peroxides
  • Spiro Compounds
  • arterolane
  • Chloroquine
  • Artemether
  • Pyrimethamine