Ischemic preconditioning (IP) conferred by brief ischemia-reperfusion induces resistance to cell injury due to the following lethal ischemia. This study aimed to elucidate whether 78-kDa glucose-regulated protein (GRP78), a main ER molecular chaperone, contributes to IP-mediated protection against ischemic myocardial injury. In a rat coronary artery occlusion model, the GRP78 protein level increased to 210% of the sham level by early IP with three cycles of 4-min ischemia and 4-min reperfusion. The IP reduced infarct size in subsequent lethal ischemia. In primary cardiomyocytes, the simulated IP procedure, incubation in oxygen-glucose deprivation (OGD) medium, also increased the GRP78 expression and suppressed the cell death caused by lethal ischemia. Transfection of grp78 antisense oligonucleotide attenuated the IP-mediated resistance to ischemia. This study showed for the first time that early IP up-regulates myocardial GRP78. It was suggested that GRP78 induced by early IP contributes to protect cardiomyocytes against ischemic injury.