The Mycoplasma hyopneumoniae genome contains at least 22 regions with a variable number of tandem nucleotide repeats (VNTRs) within coding DNA sequences (CDSs). In this work, the VNTR-containing CDSs were analysed in order to evaluate their degree of variation, possible correlations with antigenic properties, and their potential to be used as a basis for a strain typing PCR assay. We have analysed the VNTRs in five M. hyopneumoniae strains (J, 7448, 7422, PMS, and 232), based on published genomic sequences and on amplified and sequenced DNA segments. These VNTRs are distributed among 12 genes, most of which encode putative surface proteins, including known adhesins. The number of repeat units in any of the VNTRs is highly variable among the analysed strains, but they are, without exception, translationally in frame, and, therefore, code for a variable number of aminoacid repeats (VNTARs). These VNTARs determine putative structural, physicochemical and antigenic variations in the corresponding proteins, with potential implications for aspects associated to M. hyopneumoniae pathogenicity, such as cell adhesion and interactions with the host immune system. Considering that the characterized VNTARs are relatively stable, at least in vitro, and their sizes are strain-specific, we have developed a VNTR-based PCR assay for M. hyopneumoniae strain identification, useful for enzootic pneumonia (EP) diagnosis, strain typing, and distinction of circulating field isolates from vaccine strains in animals vaccinated against EP.