The curative potential of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for many hematologic malignancies derives in large part from reconstitution of normal donor immunity and the development of a potent graft-versus-leukemia (GVL) immune response capable of rejecting tumor cell in vivo. Elucidation of the mechanisms of GVL by studies of animal models and analysis of clinical data has yielded important insights into how clinically effective tumor immunity is generated following allo-HSCT. These studies have identified NK cells and B cells as well as T cells as important mediators of the GVL response. A variety of antigenic targets of the GVL response have also been identified, and include tumor-associated antigens as well as minor histocompatibility antigens. The principles of effective GVL can now be applied to the development of novel therapies that enhance the therapeutic benefit of allogeneic HSCT while minimizing the toxicities associated with treatment. Moreover, many components of this approach that result in elimination of tumor cells following allogeneic HSCT can potentially be adapted to enhance the effectiveness of tumor immunity in the autologous setting.