The influence of T cell receptor (TcR) triggering on T cell adhesion function has been systematically investigated in the present studies; we show that the adhesion function of LFA-1 is minimal in non-activated T cells but is augmented within minutes following TcR-mediated activation. In contrast, CD2 function is essentially optimal in non-activated T cells and undergoes no detectable modification within 12 h of TcR stimulation. Protein kinase C activation augments LFA-1 but not CD2 adhesion function and cyclic AMP reduces LFA-1 adhesion without affecting CD2-LFA-3 interactions. Up-regulation of the LFA-1 pathway occurs in the absence of any detectable surface redistribution of this molecule, suggesting an activation dependent modification leading to a high-affinity ICAM-1 binding state. The TcR independence of CD2 adhesion function implies a critical role of the CD2 pathway in initiating cell-cell interactions prior to TcR engagement and LFA-1-ICAM-1 binding and underscores the complementary nature of the CD2 and LFA-1 adhesion pathways during the immune response.