The structure of a mutant Antennapedia homeodomain, Antp(C39----S), from Drosophila melanogaster was determined using a set of new programs introduced in the accompanying paper. An input dataset of 957 distance constraints and 171 dihedral angle constraints was collected using two-dimensional n.m.r. experiments with the 15N-labeled protein. The resulting high quality structure for Antp(C39----S), with an average root-mean-square deviation of 0.53 A between the backbone atoms of residues 7 to 59 in 20 energy-refined distance geometry structures and the mean structure, is nearly identical to the previously reported structure of the wild-type Antp homeodomain. The only significant difference is in the connection between helices III and IV, which was found to be less kinked than was indicated by the structure determination for Antp. The main emphasis of the presentation in this paper is on a detailed account of the practical use of a novel strategy for the computation of nuclear magnetic resonance structures of proteins with the combined use of the programs DIANA, CALIBA, HABAS and GLOMSA.