Magnetic-resonance microscopy is a rapidly growing and a widely applied imaging method in translational neuroscience studies. Emphasis has been placed on anatomical, functional, and metabolic studies of genetically engineered mouse models of human disease and the need for efficient phenotyping at all levels. Magnetic-resonance microscopy is now implemented in many laboratories worldwide due to the availability of commercial high-field magnetic-resonance instruments for use in small animals, the development of accessories (including miniature radio-frequency coils), magnetic-resonance compatible physiological monitoring equipment, and access to adjustable anaesthesia techniques. Two of the major magnetic-resonance microscopy applications in the neurosciences-structural and functional magnetic-resonance microscopy-will be reviewed.