Sensory-motor interaction in primary hand cortical areas: a magnetoencephalography assessment

Neuroscience. 2006 Aug 11;141(1):533-42. doi: 10.1016/j.neuroscience.2006.03.059. Epub 2006 May 18.

Abstract

Movement control requires continuous and reciprocal exchange of information between activities of motor areas involved in the task program execution and those elaborating proprioceptive sensory information. Our aim was to investigate the sensorimotor interactions in the region dedicated to hand control in healthy humans, focusing onto primary sensory and motor cortices, by selecting the time window at very early latencies. Through magnetoencephalographic recordings, we obtained a simultaneous assessment of sensory cortex activity modulation due to movement and of motor cortex activity modulation due to sensory stimulation, by eliciting a galvanic stimulation to the nerve (the median nerve) innervating a muscle (the opponens pollicis), at rest or during voluntary contraction. The primary sensory and motor cortices activities were investigated respectively through excitability in response to sensory stimulation and the cortico-muscular coherence. The task was performed bilaterally. A clear reduction of the cortico-muscular coherence was found in the short time window following stimuli (between around 150-450 ms). In the same time period, the motor control of isometric contraction was preserved. This could suggest that cortical component of voluntary movement control was transiently mediated by neuronal firing rate tuning more than by cortico-muscular synchronization. In addition to the known primary sensory cortex inhibition due to movement, a more evident reduction was found for the component known to include a contribution from primary motor areas. Gating effects were lower in the dominant left hemisphere, suggesting that sensorimotor areas dominant for hand control benefit of narrowing down gating effects.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Analysis of Variance
  • Brain Mapping
  • Electromyography / methods
  • Female
  • Functional Laterality / physiology
  • Hand / innervation
  • Hand / physiology*
  • Humans
  • Magnetoencephalography*
  • Male
  • Middle Aged
  • Motor Cortex / physiology*
  • Movement / physiology*
  • Somatosensory Cortex / physiology*