Conjugates 7, 8, and 10 of N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides and 1,2,9,9a-tetrahydrocyclopropa[1,2-c]benz[1,2-e]indol-4-one (CBI) with a 5-amino-1H-indole-2-carbonyl linker were synthesized by Fmoc solid-phase synthesis and a subsequent liquid-phase coupling procedure. The DNA alkylating abilities of conjugates 7, 8, 6b, and 10 were examined using Texas Red-labeled PCR fragments and high-resolution denaturing gel electrophoresis. CBI conjugates 7 and 8 exhibited highly efficient sequence-specific DNA alkylation comparable with previous CBI conjugates with a vinyl linker. In particular, conjugate 10, with a 10-ringed hairpin Py-Im polyamide, alkylated at the adenine of 5'-ACAAATCCA-3'. Introduction of an indole linker greatly facilitated the synthesis of sequence-specific alkylating Py-Im polyamides.