The present study was undertaken to evaluate the implication of delta-opioid receptor function in neurogenesis and neuroprotection. We found that the stimulation of delta-opioid receptors by the selective delta-opioid receptor agonist SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] (10 nm) promoted neural differentiation from multipotent neural stem cells obtained from embryonic C3H mouse forebrains. In contrast, either a selective micro-opioid receptor agonist, [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), or a specific kappa-opioid receptor agonist, (-)-trans-(1S,2S)-U-50488 hydrochloride (U50,488H), had no such effect. In addition to neural differentiation, the increase in cleaved caspase 3-like immunoreactivity induced by H2O2 (3 microm) was suppressed by treatment with SNC80 in cortical neuron/glia co-cultures. These effects of SNC80 were abolished by a Trk-dependent tyrosine kinase inhibitor: (8R*,9S*,11S*)-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo(a,g)cycloocta(cde)trinden-1-one (K-252a). The SNC80-induced neural differentiation was also inhibited by treatment with the protein kinase C (PKC) inhibitor, phosphatidylinositol 3-kinase (PI3K) inhibitor, mitogen-activated protein kinase kinase (MEK) inhibitor or Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These findings raise the possibility that delta-opioid receptors play a crucial role in neurogenesis and neuroprotection, mainly through the activation of Trk-dependent tyrosine kinase, which could be linked to PI3K, PKC, CaMKII and MEK.