Probabilistic atlas has broad applications in medical image segmentation and registration. The most common problem building a probabilistic atlas is picking a target image upon which to map the rest of the training images. Here we present a method to choose a target image that is the closest to the mean geometry of the population under consideration as determined by bending energy. Our approach is based on forming a distance matrix based on bending energies of all pair-wise registrations and performing multidimensional scaling (MDS) on the distance matrix.