Osteoporosis is the most prevalent metabolic bone disease and a major clinical and public health problem. Heredity plays an important and well-established role in determining the lifetime risk of this disease. Major efforts are currently underway to identify the specific genes and their allelic variations that contribute to the heritable component to osteoporosis. A number of laboratories are using quantitative trait locus (QTL) methods of genome scanning in families and animal models to identify candidate genomic regions and, ultimately, the genes and genetic variations that lead to osteoporosis. Several chromosomal regions of the human genome have now been linked to osteoporosis-related phenotypes. Although the specific genes contributing to the majority of these linkage signals have not been identified, two positional candidate genes have now been identified: low density lipoprotein receptor-related protein 5 (LRP5) and bone morphogenetic protein 2 (BMP2). A number of QTL has also been identified by cross-breeding strains of mice with variable bone density and several of these QTL have been fine mapped, providing a rich new base for understanding osteoporosis. Genetic association analyses have also provided evidence for a modest relationship between allelic variants in several biological candidate genes and bone mass and the risk of fracture. These ongoing animal and human studies will provide a continuing source of new insight into the genetic regulation of bone and mineral metabolism and the molecular etiology of osteoporosis. The new insight that will emerge from this ongoing research should lead to new ways of diagnosing, preventing and treating the growing clinical and public health problem of osteoporosis.