In adipocytes, insulin stimulates glucose transport primarily by promoting the translocation of GLUT4 to the plasma membrane. Requirements for Ca(2+)/calmodulin during insulin-stimulated GLUT4 translocation have been demonstrated; however, the mechanism of action of Ca(2+) in this process is unknown. Recently, myosin II, whose function in non-muscle cells is primarily regulated by phosphorylation of its regulatory light chain by the Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK), was implicated in insulin-stimulated GLUT4 translocation. The present studies in 3T3-F442A adipocytes demonstrate the novel finding that insulin significantly increases phosphorylation of the myosin II RLC in a Ca(2+)-dependent manner. In addition, ML-7, a selective inhibitor of MLCK, as well as inhibitors of myosin II, such as blebbistatin and 2,3-butanedione monoxime, block insulin-stimulated GLUT4 translocation and subsequent glucose transport. Our studies suggest that MLCK may be a regulatory target of Ca(2+)/calmodulin and may play an important role in insulin-stimulated glucose transport in adipocytes.