Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase I-independent fucosylation pathway

Glycobiology. 2006 Aug;16(8):748-56. doi: 10.1093/glycob/cwj119. Epub 2006 May 3.

Abstract

A mammalian N-acetylglucosamine (GlcNAc) transferase I (GnT I)-independent fucosylation pathway is revealed by the use of matrix-assisted laser desorption/ionization (MALDI) and negative-ion nano-electrospray ionization (ESI) mass spectrometry of N-linked glycans from natively folded recombinant glycoproteins, expressed in both human embryonic kidney (HEK) 293S and Chinese hamster ovary (CHO) Lec3.2.8.1 cells deficient in GnT I activity. The biosynthesis of core fucosylated Man5GlcNAc2 glycans was enhanced in CHO Lec3.2.8.1 cells by the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), leading to the increase in core fucosylated Man5GlcNAc2 glycans and the biosynthesis of a novel core fucosylated monoglucosylated oligomannose glycan, Glc1Man7GlcNAc2Fuc. Furthermore, no fucosylated Man9GlcNAc2 glycans were detected following inhibition of alpha-mannosidase I with kifunensine. Thus, core fucosylation is prevented by the presence of terminal alpha1-2 mannoses on the 6-antennae but not the 3-antennae of the trimannosyl core. Fucosylated Man5GlcNAc2 glycans were also detected on recombinant glycoprotein from HEK 293T cells following inhibition of Golgi alpha-mannosidase II with swainsonine. The paucity of fucosylated oligomannose glycans in wild-type mammalian cells is suggested to be due to kinetic properties of the pathway rather than the absence of the appropriate catalytic activity. The presence of the GnT I-independent fucosylation pathway is an important consideration when engineering mammalian glycosylation.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Deoxynojirimycin / analogs & derivatives
  • 1-Deoxynojirimycin / pharmacology
  • Alkaloids / pharmacology
  • Animals
  • CHO Cells
  • Cell Line
  • Cricetinae
  • DNA, Complementary
  • Enzyme Inhibitors / pharmacology
  • Fucose / metabolism*
  • Glycoproteins / genetics
  • Glycoproteins / metabolism
  • Glycosylation
  • Humans
  • N-Acetylglucosaminyltransferases / genetics
  • N-Acetylglucosaminyltransferases / metabolism*
  • Recombinant Proteins / metabolism
  • Spectrometry, Mass, Electrospray Ionization
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Swainsonine / pharmacology
  • alpha-Mannosidase / antagonists & inhibitors

Substances

  • Alkaloids
  • DNA, Complementary
  • Enzyme Inhibitors
  • Glycoproteins
  • Recombinant Proteins
  • kifunensine
  • 1-Deoxynojirimycin
  • Fucose
  • miglustat
  • N-Acetylglucosaminyltransferases
  • alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase I
  • alpha-Mannosidase
  • Swainsonine