Electrostatic Changes in Lycopersicon esculentum Root Plasma Membrane Resulting from Salt Stress

Plant Physiol. 1990 Jun;93(2):471-8. doi: 10.1104/pp.93.2.471.

Abstract

Salinity-induced alterations in tomato (Lypersicon esculentum Mill. cv Heinz 1350) root plasma membrane properties were studied and characterized using a membrane vesicle system. Equivalent rates of MgATP-dependent H(+)-transport activity were measured by quinacrine fluorescence (DeltapH) in plasma membrane vesicles isolated from control or salt-stressed (75 millimolar salt) tomato roots. However, when bis-[3-phenyl-5-oxoisoxazol-4-yl] pentamethine was used to measure MgATP-dependent membrane potential (DeltaPsi) formation, salt-stressed vesicles displayed a 50% greater initial quench rate and a 30% greater steady state quench than control vesicles. This differential probe response suggested a difference in surface properties between control and salt-stressed membranes. Fluorescence titration of vesicles with the surface potential probe, 8-anilino-1-napthalenesulphonic acid (ANS) provided dissociation constants (K(d)) of 120 and 76 micromolar for dye binding to control and salt-stressed vesicles, respectively. Membrane surface potentials (Psi(o)) of-26.0 and -13.7 millivolts were calculated for control and salt-stressed membrane vesicles from the measured K(d) values and the calculated intrinsic affinity constant, K(i). The concentration of cations and anions at the surface of control and salt-stressed membranes was estimated using Psi(o) values and the Boltzmann equation. The observed difference in membrane surface electrostatic properties was consistent with the measured differences in K(+)-stimulated kinetics of ATPase activity between control and salt-stressed vesicles and by the differential ability of Cl(-) ions to stimulate H(+)-transport activity. Salinity-induced changes in plasma membrane electrostatic properties may influence ion transport across the plasma membrane.