Distinction between Cytosol and Chloroplast Fructose-Bisphosphate Aldolases from Pea, Wheat, and Corn Leaves

Plant Physiol. 1986 Feb;80(2):301-4. doi: 10.1104/pp.80.2.301.

Abstract

A reinvestigation of cytosol and chloroplast fructose-1,6-bisphosphate (FBP) aldolases from pea (Pisum sativum L.), wheat (Triticum aestivum L.) and corn leaves (Zea mays L.) revealed that the two isoenzymes can be separated by chromatography on diethylaminoethyl (DEAE)-cellulose although the separation was often less clear-cut than for the two aldolases from spinach leaves. Definite distinction was achieved by immunoprecipitation of the two isoenzymes with antisera raised against the respective isoenzymes from spinach leaves. The proportion of cytosol aldolase as part of total aldolase activity was 8, 9, 14, and 4.5% in spinach (Spinacia oleracea L.), pea, wheat, and corn leaves, respectively. For corn leaves we also obtained values of up to 15%. The K(m) (FBP) values were about 5-fold lower for the cytosol (1.1-2.3 micromolar concentration) than for the chloroplast enzymes (8.0-10.5 micromolar concentration). The respective K(m) (fructose-1-phosphate, F1P) values were about equal for the cytosol (1.0-2.3 millimolar concentration) and for the chloroplast aldolase (0.6-1.7 millimolar concentration). The ratio V (FIP)/V (FBP) was 0.20 to 0.27 for the cytosol and 0.07 to 0.145 for the chloroplast aldolase. Thus, cytosol and chloroplast aldolases from spinach, pea, wheat, and corn leaves differ quite considerably in the elution pattern from DEAE-cellulose, in immunoprecipitability with antisera against the respective isoenzymes from spinach leaves, and in the affinity to FBP.