Background: Cold ischemia/reperfusion injury of the hepatic graft, an unsolved problem in liver transplantations, is attributed to the release of inflammatory cytokines, especially the tumor necrosis factor- (TNF) alpha, from activated Kupffer cells (KC). Therefore, the specific inhibition of TNF-alpha could improve the viability of the hepatic graft upon reperfusion.
Methods: We assessed the efficacy of TNF-alpha antisense (TNF-AS) oligodeoxynucleotides (ODNs) delivery to KC in a rodent liver transplantation model.
Results: Seventy-one percent of the animals that received 6 hours preserved grafts in baths of lactated Ringer's solution (4 degrees C) and were treated with TNF-AS survived for over 14 days. Eighty percent of the animals treated with vehicle, sense ODNs, or balanced salt saline (BSS) died. Four hours after reperfusion of the liver, a significant reduction was noted in livers treated with TNF-AS in the release of cytosolic enzymes from the hepatocytes and the serum TNF-alpha (P<0.05). The expressions of TNF-alpha on KC and of intercellular adhesion molecule-1 on sinusoidal endothelial cells were completely suppressed in TNF-AS-treated livers.
Conclusions: TNF-AS delivery improves the viability of the hepatic graft, and this technique may solve hepatic graft nonfunction in a clinical setting.